Molecular assembly of highly symmetric molecules under a hydrogen bond framework controlled by alkyl building blocks: a simple approach to fine-tune nanoscale structures.

نویسندگان

  • Pimsai Tanphibal
  • Kohji Tashiro
  • Suwabun Chirachanchai
چکیده

To date, molecular assemblies under the contribution of hydrogen bond in combination with weak interactions and their consequent morphologies have been variously reported; however, how the systematic variation of the structure can fine-tune the morphologies has not yet been answered. The present work finds an answer through highly symmetric molecules, i.e. diamine-based benzoxazine dimers. This type of molecule develops unique molecular assemblies with their networks formed by hydrogen bonds at the terminal, while, at the same time, their hydrogen bonded frameworks are further controlled by the hydrophobic segment at the center of the molecule. When this happens, slight differences in hydrophobic alkyl chain lengths (, , and ) bring a significant change to the molecular assemblies, thus resulting in tunable morphologies, i.e. spheres, needles and dendrites. The superimposition between the crystal lattice obtained from X-ray single crystal analysis and the electron diffraction pattern obtained from transmission electron microscopy allows us to identify the molecular alignment from single molecules to self-assembly until the morphologies developed. The present work, for the first time, shows the case of symmetric molecules, where the hydrophobic building block controls the hydrogen bond patterns, leading to the variation of molecular assemblies with tunable morphologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube

The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...

متن کامل

Thermodynamically controlled self-assembly of two-dimensional oxide nanostructures.

The self-assembly of molecules or small clusters, that is, the spontaneous association of atomic or molecular building blocks under equilibrium conditions, is emerging as a successful chemical strategy to fabricate well-defined structures of nanometer dimensions, with potential applications in many areas of nanotechnology. This bottom-up approach of synthesis is a promising way to design novel ...

متن کامل

Self-assembly of organogels via new luminol imide derivatives: diverse nanostructures and substituent chain effect

Luminol is considered as an efficient sycpstem in electrochemiluminescence (ECL) measurements for the detection of hydrogen peroxide. In this paper, new luminol imide derivatives with different alkyl substituent chains were designed and synthesized. Their gelation behaviors in 26 solvents were tested as novel low molecular mass organic gelators. It was shown that the length and number of alkyl ...

متن کامل

Controlled nanometric fibers of self-assembled designed protein scaffolds.

The use of biological molecules as platforms for templating and nanofabrication is an emerging field. Here, we use designed protein building blocks based on small repetitive units (consensus tetratricopeptide repeat - CTPR) to generate fibrillar linear nanostructures by controlling the self-assembly properties of the units. We fully characterize the kinetics and thermodynamics of the assembly a...

متن کامل

Quantum Chemical Investigations on C14C10-Branched-Chain Glucoside Isomers Towards Understanding Self-Assembly

Density Functional Theory (DFT) calculations have been carried out using a Polarizable Continuum Model (PCM) in an attempt to investigate the electro-molecular properties of branched-chain glucoside (C14C10-D-glucoside) isomers. The results showed that αconfiguration of pyranoside form is thermodynamically the most stable, while the solution should contain much more β...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2016